Poly{[4-(hydroxyl)(tosyloxyl)iodo]styrene} Promoted Halotosyloxylation Reaction of Alkynes

Jiang Min CHEN^{1,2}, Xiang Jin LIN¹, Lu Ling WU¹, Xian HUANG¹*

¹Department of Chemistry, Zhejiang University (Xixi Campus), Hangzhou 310028 ²Department of Chemistry, Gannan Teacher College, Ganzhou 341000

Abstract: Halotosyloxylation reaction of alkynes with iodine or NBS or NCS was efficiently promoted by the poly {[4-(hydroxyl)(tosoyloxyl)iodo]styrene}.

Keywords: Poly{[4-(hydroxyl)(tosoyloxyl)iodo]styrene}, halotosyloxylation reaction, alkynes.

Trap of a hypoiodite species with carbon-carbon double bonds and use of its functionalized adducts as synthetic intermediates have been carried out in organic synthesis¹. Recently, it was reported the first trap the arenesulfonyl hypoiodite species with alkynes with 1-(arenesulfonyloxy)benziodoxones or Koser's reagent/iodine system². However, it was failed in bromotosyloxylate and chlorotosyloxylate of the alkynes. Polymer-supported hypervalent iodine reagents have enjoyed an increasing popularity in organic synthesis with the advantages of easy operation, low toxicity and the reuse of the recovered polymer-supported reagents³. On continuing our efforts in the application of poly {[4-(hydroxyl)(tosoyloxyl)iodo]styrene}⁴, herein, we reported a simple and efficient halotosyloxylation reaction of alkynes (**Scheme 1**). The present method has many advantages such as mild reaction conditions, convenient manipulation and good yields. And the polymer reagent could be regenerated and reused.

Alkynes **1** (1.0 mmol) reacted with poly{[4-(hydroxyl)(tosoyloxyl)iodo]styrene} (2.0 mmol) and iodine or NBS or NCS (1.1 mmol) in anhydrous CH_2Cl_2 at room temperature overnight and (*E*)- β -halo- α -(*p*-toluenesulfonyloxy)alkenes **2** were obtained in good yields (**Table 1**).

Scheme 1

$$R^{1} \xrightarrow{\qquad \qquad } R^{2} \xrightarrow{CH_{2}Cl_{2}, RT} \xrightarrow{R^{1}} X$$

$$TsO \qquad R^{2}$$

$$2 \qquad (X = I, Br, Cl)$$

^{*} E-mail: huangx@mail.hz.zj.cn

Entry	R^1	R^2	X	Yield ^a %	Entry	\mathbb{R}^1	R^2	X	Yield ^a %
1	C_6H_5	Н	I	95	6	n-C ₄ H ₉	Н	Br	83
2	n-C ₄ H ₉	H	I	92	7	C_6H_5	C_6H_5	Br	88
3	C_6H_5	C_6H_5	I	97	8	CH ₃ OCH ₂	Н	Br	79
4	Н	CO_2CH_3	I	81	9	C_6H_5	Н	Cl	60
5	C_6H_5	Н	Br	87	10	C_6H_5	Н	I	94 ^b

Table 1 Halotosyloxylation reaction of alkynes

a. The yields are based on the alkynes. b. Using regenerated resin.

Scheme 2

I₂ or NBS or NCS
$$I_2$$
 or NBS or NCS I_2 I(OH)OTs I_3 I_4 I_5 I_5

Possible reaction pathway forming the 1,2-halotosyloxylated adducts was proposed as shown in **Scheme 2**. The arenesulfonyl hypohalorite species, which is formed *in situ* by the reaction of poly{[4-(hydroxyl)(tosoyloxyl)iodo]styrene} and iodine or NBS or NCS, reacts with alkynes 1 to give the corresponding 1,2-halotosyloxylated adducts 2 in good yields.

In conclusion, we have developed a simple and efficient method for the halotosyloxylation reaction of alkynes with iodine or NBS or NCS and poly{[4-(hydroxyl)(tosoyloxyl)iodo]styrene} to prepare multifunctional olefins in good yields. The polymer reagent could be regenerated and reused.

Acknowledgment

We are grateful to the National Natural Science Foundation of China (Project No. 20332060).

References

- 1. (a) J. Rodriguez, J. P. Dulcere, *Synthesis*, **1993**, 1177. (b) A. Kirschning, C. Plumeier, L. Rose, *Chem. Commun.*, **1998**, *33* and references therein.
- 2. T. Muraki, H. Togo, M. Yokoyama, J. Org. Chem., 1999, 64, 2883.
- 3. H. Togo, K. Sakuratani, Synlett, 2002, 1966.
- 4. X. Huang, Q. Zhu, Tetrahedron Lett., 2001, 42, 6373.

Received 23 February, 2004